# Question 1. (7 points)

| T= Tru                     | e; <u>F</u> =                            | False &                 | N.O                 | .A = None Of the Abo  |
|----------------------------|------------------------------------------|-------------------------|---------------------|-----------------------|
| I- A register is           | mainly used for sl                       | hifting and storing da  | ıta                 |                       |
| a) F                       | b) T                                     |                         |                     |                       |
|                            | oe viewed as a pro<br>as a full decoder. | ogrammable AND/O        | R array in which t  | he AND plane is       |
| a) F                       | b) T                                     |                         |                     |                       |
| 3- Assume that,<br>S=0.    | an active LOW S                          | GR flip-flop is used; t | he output Q is equ  | ual to 0 when R=1 and |
| a) F                       | b) T                                     |                         |                     |                       |
| I- How many fi             | ip-flops are requi                       | red to count up to 10   | 010                 |                       |
| a) 7                       | b) 10                                    | c) 5 d) 20              | e) N.O.A            |                       |
| 5- The output in occurred. | Mealy Machine                            | is changed only when    | n the clock edge-tr | riggering has         |
| a) F                       | b) T                                     |                         |                     |                       |
|                            | frequency is appli<br>lency be at the ou |                         | CK of a JK flip-flo | op with J=K=I, what   |
| a) 50 M                    | Hz b) 25MHz                              | c) 12.5 MHz             | d) 100 MHz          | e) N.O.A              |
| 7- Sequential ci<br>a) F   | rcuits contain mer<br>b) T               | mory and combinatio     | nal circuits do not | t.                    |
| - When a J-K f             | lip-flop is constru                      | cted from SR flip-flo   | p, which one of th  | ne following is true? |
| a) S= J.(                  | and R= K+J.Q'                            | b) S= J ai              | nd R= K + Q'        |                       |
| 1000 TO THE RESERVE        | and R= K.Q'                              | d) S= J.Q               | and R= K.Q          | e) N.O.A              |
| c) S= J.(                  |                                          |                         |                     |                       |
| 0.53                       | nous circuit doesn<br>b) T               | 't need a CLOCK         |                     |                       |
| - An asynchron<br>a) F     |                                          |                         |                     |                       |

Final

## Question 2. (7 points)

Design a combinational circuit that can realize the following algorithm, using only (two or three) 2:1 Multiplexers, two Full Adders, and two inverters; VCC (5 V) and GND (0V) can be used in this design.

```
Begin (algo.)

IF Sel = 1 then

Out = A+B

Else

Out = A-B

End (Algo.)
```

Note: A, B and Out are 2 bits each.

3/8

and a supplementary

#### Question 3. (7 points)

A certain country is ruled by family of four members, A, B, C and D. A has 25 votes, B has 40 votes C has 15 votes and D has 10 votes. Any decision taken by the family is based on its receiving at least 60% of the total number of votes. Design a combinational circuit that will produce on output of 1 if a certain motion is approved by the family.

|         | In | put |          | Output    |
|---------|----|-----|----------|-----------|
| A       | В  | C   | D        | Decision  |
| A.      | ъ  |     | 1        | Decision  |
|         |    |     |          |           |
| 20      |    |     |          |           |
|         |    |     |          |           |
| 0.000   |    |     |          | i i       |
|         |    |     |          |           |
| 100     |    |     |          |           |
|         |    |     |          |           |
|         |    |     | <u>!</u> |           |
|         | •  |     |          |           |
|         |    | ]   |          |           |
|         |    | -   |          |           |
|         |    |     |          |           |
|         |    |     |          |           |
| 200 850 |    |     |          |           |
|         |    |     |          |           |
|         | -  |     |          |           |
|         |    |     |          | 1907 1907 |
| - 1     |    |     |          |           |

4/8 Å.Kassem

## Question 4. (7 points)

Show how to modify the internal circuit of the shift register (seen in class and home work), to load, or rotate left/right according to the following table.

Hint: This shift register is composed of 4 MUXs and 4 D Flip-Flops.

| Input |   |     | Next State |     |     | Action       |
|-------|---|-----|------------|-----|-----|--------------|
| Α     | В | Q3+ | Q2+        | QI+ | Q0+ |              |
| 0     | 0 | Q3  | Q2         | Q1  | Q0  | No change    |
| 0     | 1 | Q0  | Q3         | Q2  | Q1  | Rotate Right |
| 1     | 0 | Q2  | Q1         | Q0  | Q3  | Rotate left  |
| 1     | 1 | D3  | D2         | D1  | D0  | Load         |



Final

#### Question 5. (7 points)

Referring to following state diagram, construct the state table and design the circuit using D flip-flops. Is it a Moore or Mealy machine? What does this design detect? Hint: find the next state expression for each input.



6/8 A.Kassem

Final

## Question 6 (7 points)

Draw the sequence(s) of the following circuit (counter). Assume that T flip-flops are rising edge-triggered and that all flip-flops are initially cleared and have delays. Show all calculations to receive full credits.



>



Use k-map if needed

|    | 0 | 1 |
|----|---|---|
| 00 |   |   |
| 01 |   |   |
| 11 |   |   |
| 10 |   |   |

| 1  | 0   | l |
|----|-----|---|
| 00 |     |   |
| 10 |     |   |
| 11 | - 2 |   |
| 10 |     |   |

| \  | 0 | 1   |
|----|---|-----|
| 00 |   |     |
| 01 |   | 190 |
| 11 |   |     |
| 10 |   |     |

| \  | 0 | 1 |
|----|---|---|
| 00 |   |   |
| 01 |   | 8 |
| 11 |   |   |
| 10 |   |   |

Final

#### Bonus. (4 points)

Find, when the inputs enable (EN) is ON of Tri-State Buffer and Latch? What does the following system do?

Hint: 3:8 Decoder is enable when E1=E2=0 and E3=1.

3:8 Decoder is an active low, example O1=0 when A2=A1=A0=0; and O3=O2=O1=1

IOW: Input/Output Write IOW: Input/Output Read



8/8